Installation Topics For Essays


Editor’s Note

This lesson requires you to use the command line. If you have no previous experience using the command line you may find it helpful to work through the Programming Historian Bash Command Line lesson.

Lesson Goals

In this lesson you will first learn what topic modeling is and why you might want to employ it in your research. You will then learn how to install and work with the MALLET natural language processing toolkit to do so. MALLET involves modifying an environment variable (essentially, setting up a short-cut so that your computer always knows where to find the MALLET program) and working with the command line (ie, by typing in commands manually, rather than clicking on icons or menus). We will run the topic modeller on some example files, and look at the kinds of outputs that MALLET installed. This will give us a good idea of how it can be used on a corpus of texts to identify topics found in the documents without reading them individually.

Please see the MALLET users’ discussion list for the full range of things one can do with the software.

(We would like to thank Robert Nelson and Elijah Meeks for hints and tips in getting MALLET to run for us the first time, and for their examples of what can be done with this tool.)

What is Topic Modeling And For Whom is this Useful?

A topic modeling tool takes a single text (or corpus) and looks for patterns in the use of words; it is an attempt to inject semantic meaning into vocabulary. Before you begin with topic modeling, you should ask yourself whether or not it is likely to be useful for your project. Matthew Kirschenbaum’s Distant Reading (a talk given at the 2009 National Science Foundation Symposium on the Next Generation of Data Mining and Cyber-Enabled Discovery for Innovation) and Stephen Ramsay’s Reading Machines are good places for beginning to understand in which circumstances a technique such as this could be most effective. As with all tools, just because you can use it, doesn’t necessarily mean that you should. If you are working with a small number of documents (or even a single document) it may well be that simple frequency counts are sufficient, in which case something like Voyant Tools might be appropriate. However, if you have hundreds of documents from an archive and you wish to understand something of what the archive contains without necessarily reading every document, then topic modeling might be a good approach.

Topic models represent a family of computer programs that extract topics from texts. A topic to the computer is a list of words that occur in statistically meaningful ways. A text can be an email, a blog post, a book chapter, a journal article, a diary entry – that is, any kind of unstructured text. By unstructured we mean that there are no computer-readable annotations that tell the computer the semantic meaning of the words in the text.

Topic modeling programs do not know anything about the meaning of the words in a text. Instead, they assume that any piece of text is composed (by an author) by selecting words from possible baskets of words where each basket corresponds to a topic. If that is true, then it becomes possible to mathematically decompose a text into the probable baskets from whence the words first came. The tool goes through this process over and over again until it settles on the most likely distribution of words into baskets, which we call topics.

There are many different topic modeling programs available; this tutorial uses one called MALLET. If one used it on a series of political speeches for example, the program would return a list of topics and the keywords composing those topics. Each of these lists is a topic according to the algorithm. Using the example of political speeches, the list might look like:

  1. Job Jobs Loss Unemployment Growth
  2. Economy Sector Economics Stock Banks
  3. Afghanistan War Troops Middle-East Taliban Terror
  4. Election Opponent Upcoming President
  5. et cetera

By examining the keywords we can discern that the politician who gave the speeches was concerned with the economy, jobs, the Middle East, the upcoming election, and so on.

As Scott Weingart warns, there are many dangers that face those who use topic modeling without fully understanding it. For instance, we might be interested in word use as a proxy for placement along a political spectrum. Topic modeling could certainly help with that, but we have to remember that the proxy is not in itself the thing we seek to understand – as Andrew Gelman demonstrates in his mock study of zombies using Google Trends. Ted Underwood and Lisa Rhody (see Further Reading) argue that we as historians would be better to think of these categories as discourses; however for our purposes here we will continue to use the word: topic.

Note: You will sometimes come across the term “LDA” when looking into the bibliography of topic modeling. LDA and Topic Model are often used synonymously, but the LDA technique is actually a special case of topic modeling created by David Blei and friends in 2002. It was not the first technique now considered topic modeling, but it is by far the most popular. The myriad variations of topic modeling have resulted in an alphabet soup of techniques and programs to implement them that might be confusing or overwhelming to the uninitiated; ignore them for now. They all work in much the same way. MALLET uses LDA.

Examples of topic models employed by historians:

  • Rob Nelson, Mining the Dispatch
  • Cameron Blevins, “Topic Modeling Martha Ballard’s Diary” Historying, April 1, 2010.
  • David J Newman and Sharon Block, “Probabilistic topic decomposition of an eighteenth century American newspaper,” Journal of the American Society for Information Science and Technology vol. 57, no. 6 (April 1, 2006): 753-767.

Installing MALLET

There are many tools one could use to create topic models, but at the time of this writing (summer 2017) the simplest tool to run your text through is called MALLET. MALLET uses an implementation of Gibbs sampling, a statistical technique meant to quickly construct a sample distribution, to create its topic models. MALLET requires using the command line – we’ll talk about that more in a moment, although you typically use the same few commands over and over.

The installation instructions are different for Windows and Mac. Follow the instructions appropriate for you below:

Windows Instructions

  1. Go to the MALLET project page. You can download MALLET here.
  2. You will also need the Java developer’s kit – that is, not the regular Java that’s on every computer, but the one that lets you program things. Install this on your computer.
  3. Unzip MALLET into your directory . This is important: it cannot be anywhere else. You will then have a directory called or similar. For simplicity’s sake, rename this directory just .
  4. MALLET uses an environment variable to tell the computer where to find all the various components of its processes when it is running. It’s rather like a shortcut for the program. A programmer cannot know exactly where every user will install a program, so the programmer creates a variable in the code that will always stand in for that location. We tell the computer, once, where that location is by setting the environment variable. If you moved the program to a new location, you’d have to change the variable.

To create an environment variable in Windows 7, click on your (Figures 1,2,3). Click new and type in the variable name box. It must be like this – all caps, with an underscore – since that is the shortcut that the programmer built into the program and all of its subroutines. Then type the exact path (location) of where you unzipped MALLET in the variable value, e.g., .

To see if you have been successful, please read on to the next section.

Running MALLET using the Command Line

MALLET is run from the command line, also known as Command Prompt (Figure 4). If you remember MS-DOS, or have ever played with a Unix computer Terminal, this will be familiar. The command line is where you can type commands directly, rather than clicking on icons and menus.

  1. Click on your .\ You’ll get the command prompt window, which will have a cursor at (or similar; see Figure 4).
  2. Type (That is: cd-space-period-period) to change directory. Keep doing this until you’re at the . (as in Figure 5)
  1. Then type and you are in the MALLET directory. Anything you type in the command prompt window is a command. There are commands like (change directory) and (list directory contents) that the computer understands. You have to tell the computer explicitly that ‘this is a MALLET command’ when you want to use MALLET. You do this by telling the computer to grab its instructions from the MALLET bin, a subfolder in MALLET that contains the core operating routines.
  2. Type as in Figure 6. If all has gone well, you should be presented with a list of MALLET commands – congratulations! If you get an error message, check your typing. Did you use the wrong slash? Did you set up the environment variable correctly? Is MALLET located at ?

You are now ready to skip ahead to the next section.

Mac Instructions

Many of the instructions for OS X installation are similar to Windows, with a few differences. In fact, it is a bit easier.

  1. Download and install MALLET.
  2. Download the Java Development Kit.

Unzip MALLET into a directory on your system (for ease of following along with this tutorial, your directory works but anywhere is okay). Once it is unzipped, open up your Terminal window (in the directory in your Finder. Navigate to the directory where you unzipped MALLET using the Terminal (it will be . If you unzipped it into your directory as was suggested in this lesson, you can navigate to the correct directory by typing ). cd is short for “change directory” when working in the Terminal.

The same command will suffice to run commands from this directory, except you need to append (period-slash) before each command. This needs to be done before all MALLET commands when working on a Mac.

Going forward, the commands for MALLET on a Mac will be nearly identical to those on Windows, except for the direction of slashes (there are a few other minor differences that will be noted when they arise). If on Windows a command would be , on a Mac you would instead type:

A list of commands should appear. If it does, congratulations – you’ve installed it correctly!

Typing in MALLET Commands

Now that you have MALLET installed, it is time to learn what commands are available to use with the program. There are nine MALLET commands you can use (see Figure 6 above). Sometimes you can combine multiple instructions. At the Command Prompt or Terminal (depending on your operating system), try typing:

You are presented with the error message that is not recognized as an internal or external command, operable program, or batch file. This is because we forgot to tell the computer to look in the MALLET for it. Try again, with

Remember, the direction of the slash matters (See Figure 7, which provides an entire transcript of what we have done so far in the tutorial). We checked to see that we had installed MALLET by typing in . We then made the mistake with a few lines further down. After that, we successfully called up the help file, which told us what does, and it listed all of the potential parameters you can set for this tool.

Note: there is a difference in MALLET commands between a single hyphen and a double hyphen. A single hyphen is simply part of the name; it replaces a space (e.g., rather than import dir), since spaces offset multiple commands or parameters. These parameters let us tweak the file that is created when we import our texts into MALLET. A double hyphen (as with above) modifies, adds a sub-command, or specifies some sort of parameter to the command.

For Windows users, if you got the error ‘exception in thread “main” java.lang.NoClassDefFoundError:’ it might be because you installed MALLET somewhere other than in the directory. For instance, installing MALLET at will produce this error message. The second thing to check is that your environment variable is set correctly. In either of these cases, check the Windows installation instructions and double check that you followed them properly.

Working with data

MALLET comes pre-packaged with sample files with which you can practice. Type at the , and you are given the listing of the MALLET directory contents. One of those directories is called . You know it is a directory because it has the word <dir> beside it.

Type . Type again. Using what you know, navigate to first the then the directories. You can look inside these files by typing the full name of the file (with extension).

Note that you cannot now run any MALLET commands from this directory. Try it:

You get the error message. You will have to navigate back to the main MALLET folder to run the commands. This is because of the way MALLET and its components are structured.

Importing data

In the directory, there are a number of files. Each one of these files is a single document, the text of a number of different web pages. The entire folder can be considered to be a corpus of data. To work with this corpus and find out what the topics are that compose these individual documents, we need to transform them from several individual text files into a single MALLET format file. MALLET can import more than one file at a time. We can import the entire directory of text files using the command. The commands below import the directory, turn it into a MALLET file, keep the original texts in the order in which they were listed, and strip out the stop words (words such as and, the, but, and if that occur in such frequencies that they obstruct analysis) using the default English dictionary. Try the following, which will use sample data.

If you type now (or for Mac), you will find a file called . (If you get an error message, you can hit the cursor up key on your keyboard to recall the last command you typed, and look carefully for typos). This file now contains all of your data, in a format that MALLET can work with.

Try running it again now with different data. For example, let’s imagine we wanted to use the German sample data instead. We would use:

And then finally, you could use your own data. Change to a directory that contains your own research files. Good luck!

If you are unsure how directories work, we suggest the Programming Historian lesson “Introduction to the Bash Command Line”.

For Mac

Mac instructions are similar to those above for Windows, but note some of the differences below:

Issues with Big Data

If you’re working with large file collections – or indeed, very large files – you may run into issues with your heap space, your computer’s working memory. This issue will initially arise during the import sequence, if it is relevant. By default, MALLET allows for 1GB of memory to be used. If you run into the following error message, you’ve run into your limit:

If your system has more memory, you can try increasing the memory allocated to your Java virtual machine. To do so, you need to edit the code in the file found in the subdirectory of your MALLET folder. Using Komodo Edit, (See Mac, Windows, Linux for installation instructions), open the file () if you are using Windows, or the file () if you are using Linux or OS X.

Find the following line:

You can then change the 1g value upwards – to 2g, 4g, or even higher depending on your system’s RAM, which you can find out by looking up the machine’s system information.

Save your changes. You should now be able to avoid the error. If not, increase the value again.

Your first topic model

At the command prompt in the MALLET directory, type:

This command opens your file, and runs the topic model routine on it using only the default settings. As it iterates through the routine, trying to find the best division of words into topics, your command prompt window will fill with output from each run. When it is done, you can scroll up to see what it was outputting (as in Figure 8).

The computer is printing out the key words, the words that help define a statistically significant topic, per the routine. In Figure 8, the first topic it prints out might look like this (your key words might look a bit different):

If you are a fan of cricket, you will recognize that all of these words could be used to describe a cricket match. What we are dealing with here is a topic related to Australian cricket. If you go to , you will see that this file is a brief biography of the noted Australian cricketer Clem Hill. The 0 and the 5 we will talk about later in the lesson. Note that MALLET includes an element of randomness, so the keyword lists will look different every time the program is run, even if on the same set of data.

Go back to the main MALLET directory, and type . You will see that there is no output file. While we successfully created a topic model, we did not save the output! At the command prompt, type

Here, we have told MALLET to create a topic model () and everything with a double hyphen afterwards sets different parameters

This command

  • opens your file
  • trains MALLET to find 20 topics
  • outputs every word in your corpus of materials and the topic it belongs to into a compressed file (; see on how to unzip this)
  • outputs a text document showing you what the top key words are for each topic ()
  • and outputs a text file indicating the breakdown, by percentage, of each topic within each original text file you imported (). (To see the full range of possible parameters that you may wish to tweak, type at the prompt.)

Type . Your outputted files will be at the bottom of the list of files and directories in . Open in a word processor (Figure 9). You are presented with a series of paragraphs. The first paragraph is topic 0; the second paragraph is topic 1; the third paragraph is topic 2; etc. (The output begins counting at 0 rather than 1; so if you ask it to determine 20 topics, your list will run from 0 to 19). The second number in each paragraph is the Dirichlet parameter for the topic. This is related to an option which we did not run, and so its default value was used (this is why every topic in this file has the number 2.5).

If when you ran the topic model routine you had included

as below

the output might look like this:

That is, the first number is the topic (topic 0), and the second number gives an indication of the weight of that topic. In general, including leads to better topics.

The composition of your documents

What topics compose your documents? The answer is in the file. To stay organized, import the file into a spreadsheet (Excel, Open Office, etc). You will have a spreadsheet with a #doc, source, topic, proportion columns. All subsequent columns run topic, proportion, topic, proportion, etc., as in figure 10.

This can be a somewhat difficult file to read. The topics begin in the third column, in this case Column C, and continue until the last topic in Column V. This is because we have trained 20 topics – if we trained 25, for example, they would run until column AA.

From this, you can see that doc# 0 (ie, the first document loaded into MALLET), has topic 0 at a percentage of 0.43% (column C). We can see that topic 17 is the principal topic, at 59.05%, by locating the highest value. Your own topics may be different given the nature of MALLET.

If you have a corpus of text files that are arranged in chronological order (e.g., is earlier than ), then you can graph this output in your spreadsheet program, and begin to see changes over time, as Robert Nelson has done in Mining the Dispatch.

How do you know the number of topics to search for? Is there a natural number of topics? What we have found is that one has to run the train-topics with varying numbers of topics to see how the composition file breaks down. If we end up with the majority of our original texts all in a very limited number of topics, then we take that as a signal that we need to increase the number of topics; the settings were too coarse. There are computational ways of searching for this, including using MALLETs , but for the reader of this tutorial, it is probably just quicker to cycle through a number of iterations (but for more see Griffiths, T. L., & Steyvers, M. (2004). Finding scientific topics. Proceedings of the National Academy of Science, 101, 5228-5235).

Getting your own texts into MALLET

The folder in MALLET is your guide to how you should arrange your texts. You want to put everything you wish to topic model into a single folder within , ie . Your texts should be in format (that is, you create them with Notepad, or in Word choose ). You have to make some decisions. Do you want to explore topics at a paragraph by paragraph level? Then each file should contain one paragraph. Things like page numbers or other identifiers can be indicated in the name you give the file, e.g., . If you are working with a diary, each text file might be a single entry, e.g., . (Note that when naming folders or files, do not leave spaces in the name. Instead use underscores to represent spaces). If the texts that you are interested in are on the web, you might be able to automate this process.

Further Reading about Topic Modeling

To see a fully worked out example of topic modeling with a body of materials culled from webpages, see Mining the Open Web with Looted Heritage Draft.

You can grab the data for yourself at, which includes a number of files. Each individual file is a single news report.

  • For extensive background and bibliography on topic modeling you may wish to begin with Scott Weingart’s Guided Tour to Topic Modeling
  • Ted Underwood’s ‘Topic modeling made just simple enough’ is an important discussion on interpreting the meaning of topics.
  • Lisa Rhody’s post on interpreting topics is also illuminating. ‘Some Assembly Required’ Lisa @ Work August 22, 2012.
  • Clay Templeton, ‘Topic Modeling in the Humanities: An Overview | Maryland Institute for Technology in the Humanities’, n.d.
  • David Blei, Andrew Ng, and Michael Jordan, ‘Latent dirichlet allocation,’ The Journal of Machine Learning Research 3 (2003).
  • Finally, also consult David Mimno’s bibliography of topic modeling articles. They’re tagged by topic to make finding the right one for a particular application that much easier. Also take a look at his recent article on Computational Historiography from ACM Transactions on Computational Logic which goes through a hundred years of Classics journals to learn something about the field. While the article should be read as a good example of topic modeling, his ‘Methods’ section is especially important, in that it discusses preparing text for this sort of analysis.

About the authors

Shawn Graham is associate professor of digital humanities and history at Carleton University.   Scott Weingart is a historian of science and digital humanities specialist at Carnegie Mellon University.   Ian Milligan is an associate professor of history at the University of Waterloo.  

In 500 words or less, write about one of the following topics. Please note: these prompts are the same as the Common Application Essay Topics:

Topic 1

Some students have a background, identity, interest, or talent that is so meaningful they believe their application would be incomplete without it. If this sounds like you, then please share your story.

Topic 2

The lessons we take from obstacles we encounter can be fundamental to later success. Recount a time when you faced a challenge, setback, or failure. How did it affect you, and what did you learn from the experience?

Topic 3

Reflect on a time when you questioned or challenged a belief or idea. What prompted your thinking? What was the outcome?

Topic 4

Describe a problem you've solved or a problem you'd like to solve. It can be an intellectual challenge, a research query, an ethical dilemma - anything that is of personal importance, no matter the scale. Explain its significance to you and what steps you took or could be taken to identify a solution.

Topic 5

Discuss an accomplishment, event, or realization that sparked a period of personal growth and a new understanding of yourself or others.

Topic 6

Describe a topic, idea, or concept you find so engaging that it makes you lose all track of time. Why does it captivate you? What or who do you turn to when you want to learn more?

Topic 7

Share an essay on any topic of your choice. It can be one you've already written, one that responds to a different prompt, or one of your own design.

You will be prompted to include your essay when completing the online application. Please type your essay and include it as a part of your Application for Undergraduate Admissions. If emailing, mailing or faxing your essay, include your name, birthdate, and the date on the essay. This essay will be used as an important document in scholarship consideration.

Mailing Address: Loyola University New Orleans, 6363 St. Charles Ave., Campus Box 18, New Orleans, LA 70118

Fax: (504) 865-3383

0 Replies to “Installation Topics For Essays”

Lascia un Commento

L'indirizzo email non verrà pubblicato. I campi obbligatori sono contrassegnati *